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Abstract 14 

Environmental-DNA (eDNA) for metabarcoding is a rapid and effective means to investigate 15 

microplankton community composition and species diversity. The objective of this study was 16 

to examine the genetic diversity of the phytoplankton community in the Gulf of Mexico, with 17 

particular emphasis on harmful algal bloom species. Samples were collected at stations along 18 

the coast of Texas in September-October 2017 that were inundated by low salinity waters in 19 

the aftermath of Hurricane Harvey. Metabarcodes were generated from the eDNA targeting 20 

the V4 and V8-V9 regions of the 18S rDNA gene. Evaluation of the metabarcodes revealed 21 

an unexpectedly high number of harmful algal species during this short period, including five 22 
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that had not been documented in this region previously. A total of 36 harmful algal species 23 

could be differentiated based on V4 and V8-V9 metabarcode markers. Using a phylogenetic 24 

approach, the taxonomic resolution of each marker differed and not all species could be 25 

differentiated using solely one marker. The V4 region resolved species within some genera 26 

(e.g., Heterocapsa), while the V8-V9 marker was necessary to resolve species within other 27 

genera (e.g., Chattonella). In other cases, species differentiation within a genus required a 28 

combination of both markers (e.g., Prorocentrum, Karenia), or another marker will be 29 

needed to resolve all species (e.g., Alexandrium, Dinophysis). We conclude that no single 30 

marker can delineate all species, so it is recommended HAB monitoring programs use more 31 

than one marker. Overall, the observed diversity of HAB species along the Texas coast using 32 

metabarcoding exceeded reports from other parts of the world.  33 
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1. Introduction 41 

Marine phytoplankton include a diverse group of species that play a vital role in the ocean food 42 

web as primary producers. As such, the community composition and structure of the 43 

phytoplankton are an important factor in determining the functioning of marine food webs. Over 44 



 

 

 

 

the last two decades, interest has focused on the diversity of protists and their role in marine 45 

global biogeochemical cycles. Among the estimated >70,000 species of algae (Guiry, 2012), 46 

only 153 are listed on the IOC-UNESCO Taxonomic Reference List of Harmful MicroAlgae 47 

website, where HAB species are defined as “species producing toxins or toxic effects” 48 

(Lundholm et al., 2009). This list includes species from six eukaryotic groups but does not 49 

include species that cause harm due to biomass accumulation, mucus production or morphology 50 

(e.g., setae). A recent review of the diversity HAB species on the coasts of the US found that 51 

more than half of the 153 HAB species (98 species) are reported in US waters and most of these 52 

(84 species) are found in the Gulf of Mexico (GoM) (Anderson et al., 2021). Historically, 53 

Karenia brevis has been the primary HAB species of concern in the GoM (Steidinger, 2009) and 54 

only in the past decade has Dinophysis emerged as a problem (Campbell et al., 2010). Given the 55 

apparent increase in HAB events reported globally (Hallegraeff et al., 2021a), there are 56 

increasing safety concerns for protecting human health as well as aquaculture and increasing 57 

needs for improved methods of detection. 58 

Most HAB monitoring programs are conducted using morphology-based methods, which are 59 

labor-intensive and require taxonomic expertise. Some HAB species can be overlooked, 60 

however, because of their small cell size or low abundance. In addition, results can sometimes be 61 

misleading owing to the lack of distinct morphological traits to differentiate HAB vs non-HAB 62 

species within the same genus, i.e., cryptic species. The inclusion of cryptic diversity and 63 

presence of very small cells is known to impose challenges in accurate identification and 64 

diversity estimates (Lundholm et al., 2006; Amato & Montresor, 2008; John et al., 2014).  65 

The development of molecular-based methods and high-throughput sequencing (HTS) has 66 

provided powerful tools for characterizing the diversity of the phytoplankton. In particular, the 67 



 

 

 

 

metabarcoding approach, which incorporates molecular marker amplification and HTS, has been 68 

successfully employed to assess the species composition, diversity, and distribution in natural 69 

phytoplankton communities (Nagai et al., 2016; de Luca et al., 2019) and has facilitated the 70 

characterization and differentiation of cryptic species (Lundholm et al., 2006; Gaonkar et al., 71 

2017; de Luca et al., 2021).  72 

With the increasing demand for environmental monitoring programs, the trend has been a shift 73 

away from the classical morphological approach and toward DNA-based metabarcoding (Abad 74 

et al., 2016; Deagle et al., 2018; Pawlowski et al., 2018; Caracciolo et al., 2022). The most 75 

common marker genes used in phytoplankton community diversity studies are the V4 and V8-V9 76 

hypervariable regions of the 18S rDNA gene. The preference for which marker to use for 77 

phytoplankton diversity studies has been debatable as both have advantages and disadvantages. 78 

Prior studies have shown that although both markers provided similar patterns in alpha diversity, 79 

V9 revealed a higher number of OTUs than V4 (Nanjappa et al., 2014; Tragin et al., 2018; Choi 80 

and Park, 2020). Contradictory results were observed for diatoms, however, where species 81 

diversity was higher using the V4 barcode compared to V8-V9. For example, in Chaetoceros, a 82 

collapse in the V9 terminal clade leads to a decrease in diversity, and the corruption of V9 83 

forward primer due to introns (Gaonkar et al., 2018). Since both these markers have been used in 84 

monitoring of harmful algal diversity (Xu et al., 2017; Liu et al., 2020; Huang et al., 2021; 85 

Funaki et al., 2022), the objective here was to highlight the importance of choosing a marker 86 

based on the question addressed. Can a single marker based metabarcoding can differentiate and 87 

reveal the local HAB species diversity? 88 

The present study was conducted during a 7-week period during Sept-Oct 2017 to assess HAB 89 

species diversity in the GoM on the Texas coast following Hurricane Harvey. Hurricane Harvey 90 



 

 

 

 

was the wettest storm in recent history, resulting in 1.5m of rain in the Houston, TX area and 91 

producing an estimated 17 ± 5 km3 of freshwater that was released from Galveston Bay onto the 92 

coastal shelf (Thyng et al., 2020). Coastal eutrophication has been linked with harmful algal 93 

bloom proliferation (Howarth 2008). Given the known impacts of terrestrial runoff on coastal 94 

waters following cyclones (Anglès et al., 2015; Fiorendino et al., 2021), the objective of this 95 

study was to assess the metabarcoding approach for estimating HAB species diversity and 96 

relative abundance. Because a single marker has not been identified for barcoding the 97 

phytoplankton, it was important to compare the resolution of the V4 vs. V8-V9 markers for HAB 98 

species detection and to characterize the potential HAB species using a phylogenetic approach. 99 

Moreover, results were used to compare HAB species richness in the GoM with time series in 100 

other regions of the world. Results have uncovered the genetic diversity of the HAB community 101 

in the GoM and will also provide relevant information for developing future monitoring 102 

programs. Given the perceived global increase in HAB events (Hallegraeff et al., 2021b), 103 

improved identification of HAB species is needed.   104 

2. Materials and Methods 105 

2.1. Sample site and collection   106 

This study was conducted in the Gulf of Mexico along the Texas coast after the passage of 107 

Hurricane Harvey on August 25, 2017. A total of 36 samples were collected on 5 dates during 108 

September to October 2017 (Supplemental Fig. 1). Surface seawater (~3 to 10 m) was filtered on 109 

5.0 μm 47 mm diameter Durapore filters (Millipore, USA) in triplicate for DNA extraction using 110 

the AllPrep DNA/RNA MiniKit (Qiagen, USA) following the manufacturer’s instructions. 111 



 

 

 

 

The Texas Observatory for Algal Succession Time series (TOAST) is a network of Imaging 112 

FlowCytobots (IFCB) on the Texas coast. The IFCB at Port Aransas has been deployed since 113 

2007 (Campbell et al., 2010; Fiorendino et al., 2021). Images from TOAST were used to identify 114 

HAB species for this study (https://toast.tamu.edu/timeline?dataset=PortAransas). 115 

2.2. Metabarcoding and HTS sequencing 116 

DNA concentration and quality were evaluated using a Nanodrop spectrophotometer (Thermo 117 

Fisher Scientific Inc, USA) and normalized to 5 ng/µl concentration for the amplicon library 118 

construction. The hypervariable regions (V4 and V8-V9) of the 18S rDNA gene were amplified 119 

using customized primers: V4f CCAGCASCYGCGGTAATTCC; V4r ACTTTCGTTCTTGAT 120 

V8-V9f ATAACAGGTCTGTGATGCCCT; V8-V9r CCTTCYGCAGGTTCACCTAC 121 

(Bradley et al., 2016; Kozich et al., 2013) following the modifications of Gaonkar et al. (2020). 122 

Amplifications were performed in triplicate 25 µl reactions for each sample consisting of ca. 5 123 

ng of extracted DNA, 0.5 µM primers and 1x GoTaq® Green Master Mix (Promega, USA). PCR 124 

cycles were set at initial denaturation of 95 ºC for 300 s, followed by 10 cycles of denaturation at 125 

95 ºC for 30 s, annealing at 47 ºC for 45 s, extension at 72 ºC for 60 s, and subsequently 15 126 

cycles of denaturation at 95 ºC for 35 s, annealing at 57 ºC for 40 s, extension at 72 ºC for 60 s, 127 

with a final extension step of 10 min at 72 ºC for both markers. A negative control was included 128 

containing only Optima water (Fisher Scientific, USA).  129 

 130 

Replicate PCR products for each sample were merged and purified using a DNA Purification 131 

SPRI Magnetic Beads (ABM, Canada) and quantified using NanoDrop 3300 (Thermo Fisher 132 

Scientific). Next, all samples were pooled to an equimolar concentration and repurified. This 133 

product was analyzed using an Agilent Fragment Analyzer Systems DNA Analysis Kits - NGS 134 



 

 

 

 

Fragment Kit (1-6000bp) and sequenced on an Illumina MiSeq Platform using a v3 kit 135 

(2x300bp). The amplicon library sequencing was performed by the Genomics and 136 

Bioinformatics Services at Texas A&M University (https://www.txgen.tamu.edu) using custom 137 

designed primers (Bradley et al., 2016). 138 

2.3. HTS-data processing and analysis 139 

MiSeq paired end reads of 2x300 bp were analyzed using mothur v1.39.0 (Schloss et al., 2009) 140 

using the protocol outlined by Piredda et al. (2017). The resulting contigs with three or more 141 

reads were BLASTed (blastn) against PR2 database v4.12.0, for taxonomic annotation (Guillou 142 

et al., 2013; del Campo et al., 2018). Only annotations with molecular operational taxonomic 143 

units (OTUs) similarity of ≥ 90% and query coverage ≥ 70% against the HAB reference 144 

sequence (IOC-UNESCO list) were included in this study. Taxonomically assigned sequences 145 

(OTUs) annotated as HABs used in the study were submitted to Biological & Chemical 146 

Oceanography Data Management Office (BCO-DMO) under the project number 715170. 147 

2.4. HAB delineation based on phylogenetic approach 148 

OTUs recovered by clustering followed by BLAST may differ depending on the % similarity 149 

threshold level used. These potential HAB OTUs were compared against the reference sequences 150 

using a phylogenetic approach. Following the BLAST analysis and screening procedure, the 151 

putative OTUs were aligned with the IOC-UNESCO designated HAB reference sequences from 152 

GenBank using MAFFT v7.245 (Katoh and Toh, 2008) and manually corrected using SeaView 153 

v4.5.4 (Gouy et al., 2010). A maximum likelihood (ML) tree was generated using RAxML 154 

v2.0.5 (Stamatakis, 2014) using a GTRGAMMA substitution model with 1000 replicate for 155 

bootstrap analysis. Those OTUs that were recovered outside the clades were removed and the 156 



 

 

 

 

ML tree was generated again. The resulting OTUs which were represented with a reference HAB 157 

sequence within or along the clades were considered validated HAB species. 158 

3. Results 159 

3.1. Composition and diversity of the microplankton community in Gulf of Mexico, Texas 160 

coast 161 

From the BLAST results, after the initial screening criterion of ≥90% similarity and ≥70% 162 

sequence length coverage, a total of 16,918 (V4) and 10850 (V8-V9) OTUs were recovered that 163 

were assigned to microplankton (excluding Metazoans). To examine the diversity of the 164 

microplankton in the northern Gulf of Mexico along the Texas coast, the annotated OTUs were 165 

first clustered at subkingdom level: Harosa (92%), Hacrobia (4.6%), Viridiplantae (1.9%), Eozoa 166 

and others (1.5%). Among these, Harosa (Alveolata, Stramenopiles and Rhizaria) was the most 167 

abundant subkingdom largely comprised of Dinoflagellata (70.4%) and Ochrophyta (16.9%). 168 

Hacrobia which included cryptophytes, haptophytes, picozoa and others, was the second most 169 

abundant group (Fig. 1). Viridiplantae (Archaeplastida) and Eozoa (protozoan and amoebozoans) 170 

were minor components with only a few thousand reads in both V4 and V8-V9 markers. Based 171 

on the BLAST results, only 5 and 3.5 % of the OTUs were represented as potential HABs with 172 

V4 and V8-V9 markers, respectively (Fig. 1).  173 

3.2 Diversity of HAB OTUs 174 

Based on the BLAST analysis following the criteria of similarity (>90% similarity and >70% 175 

sequence length coverage), we found 835 OTUs (n=163,689) with the V4 marker and 393 OTUs 176 

(n=125,266) with the V8-V9 marker annotated as HAB species. Among the 835 OTUs annotated 177 

as HAB species with the V4 marker, 50 OTUs were classified as diatoms, 744 as dinoflagellates, 178 



 

 

 

 

26 as raphidophytes, and 15 as haptophytes. Karenia and Karlodinium shared the highest number 179 

of OTUs and were most abundant among the dinoflagellates, while Pseudo-nitzschia was 180 

dominant in diatoms in both the markers. Classifications to species level using >95% similarity 181 

and >95% sequence length coverage to minimize the number of OTUs with lower similarity and 182 

shorter sequence length (Gaonkar et al. 2020) revealed six species in diatoms, 19 in 183 

dinoflagellates, three in haptophytes and three in raphidophytes, for a total of 31 species 184 

(Supplemental Table 1). 185 

Among the 394 OTUs identified with the V8-V9 marker, 59 OTUs were classified as diatoms, 186 

307 as dinoflagellates, 17 as raphidophytes, and 11 as haptophytes. Again, clustering OTU 187 

classifications to species level revealed eight species in diatoms, 16 dinoflagellates, three in 188 

haptophytes and two in raphidophytes, for a total of 29 species. Exceptions include 189 

Prorocentrum lima, which was only 95.6% (V4) and 93.8% (V8-V9) similar to the reference 190 

sequence, and Karenia brevis, which was 91.3 % (V8-V9) similar to the reference sequence. 191 

Only 23 HAB species were common among both the V4 and V8-V9 markers (details can be 192 

found in Supplemental Table 2). Moreover, five HAB species that had not been documented in 193 

this region previously were identified in this study (Table 1). 194 

3.3. Diversity of HAB species illustrated with a phylogenetic approach 195 

A phylogenetic approach was carried out to verify annotations because some of the OTUs had 196 

low sequence similarities. The dominant OTUs for each potential HAB species were aligned 197 

along with the reference sequences for HAB species listed by the IOC-UNESCO for the 198 

phylogenetic analysis. The resulting ML-tree for the V4 marker revealed at least 26 HAB species 199 

and for the V8-V9 marker the number was 24 potential HAB species (Fig. 2A&B). The putative 200 

OTUs with similarities <99% were removed from the final trees. Based on the V4 and V8-V9 201 



 

 

 

 

phylogenies for the HAB species, it was evident that the three major groups, dinoflagellates, 202 

diatoms and raphidophytes, were well resolved (Fig. 2A&B). The clade structure appeared to be 203 

basically the same in the two phylogenies. The ingroup dinoflagellates formed a clade with good 204 

bootstrap values (71 and 100 in V4 and V8-V9, respectively) but showed weak support for the 205 

basal topology in the V4 compared to the V8-V9 marker. The species belonging to the genera 206 

Karenia, Karlodinium, Amphidoma, Heterocapsa, and Prorocentrum were poorly resolved. 207 

Moreover, based on the two phylogenies it was evident that Prorocentrum species are 208 

paraphyletic.  209 

3.4. Resolution of species based on marker region 210 

The generated HAB reference dataset for identification and delineation of these species included 211 

100 V4 and 98 V8-V9 reference sequences. A total of 422 positions were present in the V4 212 

marker of which 281 formed a distinct alignment pattern, while there were 340 positions in the 213 

V8-V9 region of which only 223 formed a distinct alignment pattern. Among the Karenia, 214 

Karlodinium, Azadinium, Amphidoma, Heterocapsa and Dinophysis genera, only 29 (V4) and 52 215 

(V8-V9) distinct alignment patterns were evident, which supports the low-resolution power and 216 

poor bootstrap values at the basal clade of the V4 marker. Most of the reference sequences in the 217 

V8-V9 region are not complete in the 3′-end, which explains the poorly supported ramification.  218 

Based on the phylogenetic approach it was evident that the resolution power of the V4 and V8-219 

V9 marker genes differed (Fig. 2A&B, Fig. 3A-J). Overall, the V4 marker had better resolution 220 

for the diatoms and prymnesiophytes: Halamphora coffeaeformis, Nitzschia bizertenisis and 221 

Pseudo-nitzschia spp. were distinguished, as were Phaeocystis pouchetii and P. globosa (Fig. 2A 222 

vs. 2B). Among the dinoflagellates, the V4 marker was able to distinguish the toxic Heterocapsa 223 

circularisquama from the non-toxic species (Fig. 2A&B). The ML-tree clearly shows species 224 



 

 

 

 

within this genus can be resolved using the V4 marker while V8-V9 marker fails to differentiate 225 

the non-toxic species vs the toxic species.   226 

Overall, the V8-V9 marker region appeared to resolve the clade structure for the dinoflagellates 227 

with more support.  In the genus Prorocentrum only a few species are toxic; however, the V4 228 

marker failed to delineate the toxic vs non-toxic species, while V8-V9 marker was successful in 229 

differentiating P. cordatum (Fig. 3E&F). Similarly, only several species within the Dinophysis 230 

genus could be delineated (D. acuta, D. fortii, and D. infundibulus) (Fig. 3B). The V8-V9 231 

barcode was also able to distinguish Karlodinium jejuense and K. veneficum (Fig. 3H) and 232 

Chattonella antiqua and C. marina (Fig. 3B).  233 

In several cases to delineate species within a genus, a combination of both markers was 234 

necessary because the resolution power of each marker individually was low.  This was evident 235 

for the genus Alexandrium. Although a number of species could be distinguished with either the 236 

V4 or V8-V9 marker (e.g., A. affine, A. andersonii, A. australiense, A. ostenfeldii, A. taylori), the 237 

V4 marker was required to differentiate A. catenella and A. pacificum; whereas a combination of 238 

the two were needed to resolve A. minutum, A. tamutum and A. insuetum (Fig. 3C&D). Neither 239 

marker was able to distinguish A. hiranoi and A. pseudogonyaulax (Fig. 3C&D).  This difficulty 240 

was also the case for Karenia. From the ML-tree generated with the V4 marker, K. mikimotoi 241 

and K. brevis were identical, while K. selliformis formed a distinctive clade (Fig. 3G). In 242 

contrast, from the V8-V9 ML-tree, the two species K. mikimotoi and K. brevis could be 243 

differentiated, but the V8-V9 marker failed to discriminate K. selliformis from K. mikimotoi (Fig. 244 

3H). Similarly, the HAB species Azadinium poporum and A. spinosum can be differentiated from 245 

the non-HAB Azadinium species using a combination of V4 and V8-V9 markers (Fig. 2A&B). 246 



 

 

 

 

In other cases, either the V4 or V8-V9 marker successfully differentiated the HAB species: 247 

Gymnodinium catenella, Gonyaulax spinifera, Lingulodinium polyedra, Margalefidinium 248 

polykrikoides, Polykrikos hartmanii, Pyrodinium bahamense (Fig. 2A&B). For the genera 249 

Ostreopsis and Gambierdiscus, either the V4 or the V8-V9 marker can be used to distinguish the 250 

14 toxin-producers among the 16 species in the genus Gambierdiscus and the 7 toxin-producers 251 

among the 11 species of Ostreopsis (Fig. 3I&J). 252 

3.5 Global distributions 253 

Datasets from other coastal time series reporting HAB species using microscopy and 254 

metabarcoding were compiled to compare with this study in the Gulf of Mexico (Table 1). There 255 

are 84 known HAB species documented in the Gulf of Mexico region by microscopy, a total of 256 

36 HAB species were observed on the Texas coast in just the short 7-week period of this 257 

metabarcording study (Table 1). Of these, 31 were previously known and an additional five 258 

species were identified in the Gulf of Mexico for the first time (Alexandrium hiranoi, A. 259 

pacificum, Ampidoma languida, Nitzschia bizertensis, and Prymnesium polylepis). In comparison 260 

with the other metabarcoding studies, the overall HAB diversity in this study was similar to 261 

Bohai Sea and the Changjiang estuary, but few species were common (Table 1). Filter cut-offs 262 

and sequencing depth differed from this study (Supplemental Table 3). Overall, 46 HAB species 263 

have been observed at TOAST from Imaging FlowCytobot images and HTS-metabarcoding 264 

between 2007 -2021 (Table 1). From images and microscopy, both the Gulf of Mexico and the 265 

Mediterranean Sea regions had the highest number of HAB species reported (84 species for 266 

both). In fact, the Mediterranean Sea had the most species in common with this study and the 267 

Gulf of Mexico overall.   268 

4. Discussion 269 



 

 

 

 

Among the tens of thousands of known phytoplankton species, only 153 species are known to 270 

produce toxins and are representative of HAB diversity (Lundholm et al., 2009). In recent years, 271 

metabarcoding has been proposed as an effective and reliable tool for measuring biodiversity of 272 

the phytoplankton, as well as HAB monitoring. This approach has shown promise for detecting 273 

hidden diversity (e.g., de Varges et al., 2015; Gaonkar et al., 2020), but the transition from 274 

classical light microscopy to metabarcoding for studies of HAB diversity is recent (Nagai et al., 275 

2017; Xu et al., 2017; Liu et al., 2020; Huang et al., 2021). It can be seen from the results 276 

presented here that the choice of the marker to assess diversity may depend on the species of 277 

interest and the resolution power of the marker. Moreover, a phylogenetic approach should be 278 

included to confirm species identification, rather than relying on BLAST, to provide better 279 

resolution and accuracy. 280 

4.1 Selection of appropriate HTS marker to delineate HAB species 281 

One of the main advantages of employing HTS-metabarcoding is the ability to distinguish 282 

species, including the cryptic ones (e.g., Slapeta, 2006). Some species can be differentiated with 283 

a single marker, while others require a combination of both V4 and V8-V9 markers.  For an 284 

HTS-based monitoring program, the choice of the marker to be used should be based on the 285 

target species of interest.  286 

There are examples where the choice of the marker used for metabarcoding provides essential 287 

information. In case of Heterocapsa, characterizing the species within this genus 288 

morphologically is a challenging and difficult task. Based on the phylogenetic resolution, only 289 

the V4 marker can differentiate the species (Fig. 2A&B). This is important because not all 290 

members of the genus Heterocapsa are toxin producers; of the 19 species (WoRMS, 2022), only 291 

H. circularisquama is associated with mortality in bivalves (Horiguchi, 1995). The V8-V9 292 



 

 

 

 

marker alone was useful in only a few cases, but it allowed the toxic Karlodinium species to be 293 

identified. Only 6 of the 12 Karlodinium species are reported to be toxic (Lundholm et al., 2009; 294 

WoRMS, 2022), but there are only reference sequences available for the toxic species K. 295 

veneficum and K. australe.  Similarly, for Dinophysis, of the 123 documented species, only 10 296 

are reported to be toxic (WoRMS,2022; Lundholm et al., 2009); however only D. acuta and D. 297 

fortii and D. infundibulus are potentially distinguishable from other species with the V8-V9 298 

marker. Overall, most toxic species of Dinophysis cannot be distinguished with either marker 299 

(Fig. 3A&B) and a different target gene will be needed. In contrast, the two toxin-producing 300 

Phalacroma species (Lundholm et al., 2009) can be distinguished from the other 10 non-toxin 301 

producing species (WoRMS, 2022) with both V4 and V8-V9 markers (Fig. 3A&B). 302 

In some cases, using both V4 and V8-V9 markers is necessary to identify target HAB species. 303 

For example, the genus Karenia includes 10 species, 9 of which are fish killers in coastal waters 304 

globally (WoRMS, 2022; Lundholm et al., 2009). In the GoM Karenia brevis is one of the most 305 

extensively studied HAB species due to its impact on ecosystem and human health (Brand et al., 306 

2012), but there are six recognized species known to coexist. Metabarcoding results revealed that 307 

members of this genus are challenging to differentiate using a single marker. If the V4 marker 308 

was used, the presence of K. mikimotoi could lead to a false positive result if only K. brevis was 309 

present; the V8-V9 marker would be required for differentiation. This highlights the importance 310 

of marker choice. 311 

4.2. Reference dataset and taxonomically validated sequences 312 

Taxonomically validated reference barcodes play a key role in identification and delineation of 313 

the species diversity in a community. One important and necessary component of the 314 

metabarcoding approach is the availability of the taxonomically validated reference barcode 315 



 

 

 

 

sequences. Lack of reference sequences will lead to misrepresentation of the species diversity 316 

and decrease the count of the species present within a genus. Of the 153 HAB species listed by 317 

the IOC, only 100 reference sequences were available for the V4 region and 98 for the V8-V9 318 

region. This lack of reference sequences for ~one third of the species on the IOC list (Lundholm 319 

et al., 2009) could lead to an underestimation of the potential HAB diversity. The lack of 320 

reference sequences is also true for other protist groups (Santoferrara et al., 2020). If species are 321 

not well represented in the reference dataset, the alpha and beta diversity estimates of a 322 

community will be seriously underestimated.  323 

Another purpose for creating a comprehensive reference dataset is to understand the genetic 324 

variance among geographically distributed species. In the present study, only one representative 325 

barcode for each species was used in the phylogenetic analyses, although peripheral 326 

metabarcodes were also found. Peripheral metabarcodes differ by one or just a few bases from 327 

the potential HAB reference sequence, which may be the result of geographic variation or 328 

heterogeneity in the sequence. In this study, the dominant metabarcode was 100 % identical to 329 

the reference sequence in ~half of the sequences. In the other cases (see 4.3 below), another less 330 

abundant OTU was identical, which supports the conclusion for geographic variation or 331 

heterogeneity in HAB species (Supplemental Table 1 and 2).    332 

4.3. Phylogenetic approach vs. BLAST analysis 333 

Many previous studies have relied on BLAST-based assumptions for taxonomic annotation to 334 

explore species diversity (de Varges et al., 2015; Piredda et al., 2017; de Luca et al., 2019; 335 

Gaonkar et al., 2020); however, there are limitations to this approach. One of the main 336 

drawbacks of inferring species identifications only from BLAST results is the lack of visual 337 



 

 

 

 

inspection to compare a sequence to the reference. Some reference sequences present in the PR2 338 

database are curated sequences and some are from environmental clones (del Campo et al., 339 

2018). For example, an OTU was annotated as Pyrodinium bahamense (AB936750) with 340 

99.47% similarity and 100% length coverage based on BLAST with PR2 database. When 341 

checking the alignment visually, it was evident that the sequence was not P. bahamense and was 342 

not close to the clade including P. bahamense. To investigate this further, this sequence was 343 

blasted against GenBank and showed a 99.48% similarity, 100% length coverage, and 0.0 e-344 

value with Goniodoma polyedricum (KM886380) and 93.35% similarity, 55% length coverage, 345 

and 0.0 e-value with P. bahamense (AB936750). Obviously, there can be errors in the reference 346 

databases. If only a BLAST approach had been used with the given reference database, results 347 

may have included errors. 348 

At times, the most dominant OTU in a sample may not be identical to the reference HAB 349 

sequence, which may be due to geographic distance or sequence reading error. In this study, 350 

reference sequences from GoM were utilized; however, in cases of where GoM sequences were 351 

not available, references from other US coasts were chosen. If both were unavailable, a full 352 

length taxonomically validated 18S rDNA reference sequence from GenBank was used to 353 

generate phylogenies. The reason for prioritizing locally obtained reference sequences is that 354 

these are expected to match the dominant OTU, irrespective of species rarity (Gaonkar et al., 355 

2020). An example for such a scenario in this data is an OTU that was identical to Polykrikos 356 

hartmanii (AY421789) but was not the dominant OTU in the list of OTUs matched with this 357 

reference sequence. The dominant OTU was one bp different, which could be a geographic 358 

variation because the reference sequence was generated from a Korean strain. Among the 359 



 

 

 

 

Karenia, Karlodinium, Amphidinium, Heterocapsa and Dinophysis genera, the resolution power 360 

of both markers is low, which can lead to confusion if results are not validated properly.  361 

Phylogenetic analysis to delineate the toxin-producing HAB species, as defined by the IOC-362 

UNESCO, can markedly improve the OTUs recovered from the BLAST analysis for 363 

metabarcoding. The advantage of using the phylogenetic approach is that it rectifies the 364 

uncertainties inherent in the BLAST results. An example of this uncertainty is seen in the 365 

Karenia mikimotoi. A BLAST search in GenBank revealed that the same OTU had multiple hits 366 

with ≥ 99% similarity to Karenia, Karlodinium, Azadinium, and Amphidinium. When the 367 

alignment was visually inspected for the sequence base differences, it was evident that the base 368 

differences were present at different positions. This explains why the phylogenetic approach is 369 

favored over the BLAST approach for species identification. The BLAST approach can still 370 

provide preliminary information for HAB species identification. Examples include Amphidoma 371 

languida and Prorocentrum lima, which were only identified by BLAST as their closest 372 

representative reference HAB sequence (97.91 % similarity with A. languida reference sequence 373 

and 95.56% similarity with P.  lima reference sequence). Since these two OTUs had similarities 374 

<99%, they did not meet the criterion of defining HAB species, so these OTUs were not included 375 

in the phylogenies.  376 

 377 

4.4. Diversity of HAB species in the Gulf of Mexico, Texas coast via HTS-metabarcoding 378 

 The Gulf of Mexico is a semi enclosed ocean basin that is one of the most productive US 379 

aquatic ecosystems and supports major commercial and recreational fisheries. Global warming 380 

and anthropogenic eutrophication have led to major impacts on coastal ecosystems. With climate 381 



 

 

 

 

change, the expectation is that HAB species will increase their geographic range into new areas 382 

that may facilitate HAB initiation and maintenance (see Wells et al., 2015; Gobler et al., 2020). 383 

Additionally, with climate change there is potential for an increased frequency and intensity of 384 

hurricanes (Emanuel, 2017). Increased freshwater discharge conditions after hurricane landfalls 385 

appear to favor dinoflagellates in the GoM (Fiorendino et al., 2021). From this perspective, the 386 

HAB diversity reported during this short period following Hurricane Harvey is revealing. 387 

Most of the HAB diversity explored via metabarcoding in this study could not be easily 388 

characterized based on traditional morphotaxonomic observation by light microscopy. First, 389 

some HAB species share similar morphological traits with non-HAB species. For example, the 390 

species in the genus Heterocapsa are all small cells with similar morphological traits, so are 391 

difficult to distinguish (Iwataki, 2008), while only H. circularisquma is a toxic species. Other 392 

examples include members of the genera Azadinium and Phaeocystis. Additionally, among the 393 

Pseudo-Nitzschia species only ~half are toxic. Secondly, the morphological variation within 394 

Karenia species can make distinguishing among species of this genus difficult. Third, the small 395 

size and nondescript morphology of pico- and nano-plankton (< 5µm), such as Karlodinium 396 

veneficum, make these cells challenging to identify by light microscopy. Therefore, these groups 397 

of hidden species often are characterized only because of HTS-metabarcoding (Chen et al., 398 

2019). The small Pelagophyceae, such as Aureoumbra lagunensis, have been reported in the 399 

GoM, but were not detected in this study. Since the extended brown tide bloom in the 1990s 400 

(Buskey et al., 2001), the range of A. lagunensis has expanded to include other regions of Texas, 401 

Florida, and Cuba (Hall et al., 2018); however, because the focus of the HTS-metabarcoding was 402 

eukaryotes in the >5µm size fraction, these smaller sized species and HAB cyanobacterial 403 

species were not represented in this study. Future studies should consider the target HAB species 404 



 

 

 

 

when selecting filters for size fractionation.  Alternatively, given the short duration of this study, 405 

A. lagunenis may have been absent at this time, as was noted for several other HAB species 406 

previously recorded at TOAST (Table 1). 407 

 408 

4.5. Global diversity of HABs  409 

The number of reported HAB events globally have increased in the last three decades, based on 410 

the Harmful Algal Event Database, HAEDAT (http://haedat.iode.org). One explanation is the 411 

intensification in monitoring effort (Hallegraeff et al., 2021a, b). But with global climate change 412 

and continuing interference of anthropogenic activities, impacts on the productivity and 413 

biodiversity of aquatic ecosystems are increasing (Heisler et al., 2008; Gobler, 2020). 414 

Consequently, one of the intriguing questions currently addressed is whether there will be a 415 

continued increase in HAB events. From HAB monitoring programs there appears to be growing 416 

concern due to the negative effects of changes in environmental conditions on the diversity. Most 417 

obvious is that many HAB species favor warmer waters (Gobler et al., 2017).  418 

A comparison of the number of toxin-producing HAB species in this GoM study with coastal 419 

time series data from other parts of the of the world found the highest species diversity to be 420 

observed in the GoM, Mediterranean Sea and N. Atlantic (Table 1). The Mediterranean Sea and 421 

the GoM are similar in terms of latitude, geographical characteristics, and environmental 422 

parameters, so the large number of HAB species in both regions is not unexpected. The Long-423 

Term Ecological Research station in the Gulf of Naples has been assessing phytoplankton 424 

diversity and distribution for close to four decades (Zingone et al., 2019). At this station, a total 425 

of 54 HAB related species have been identified since 1984 and of this total, 22 species were 426 



 

 

 

 

found to be in common with HAB species observed in this study (Cipolleta et al., 2021). Note, 427 

however, this compares ~40 years with 7 weeks of observations. Similarly, HAB diversity in the 428 

North Atlantic from 1989-2019 revealed presence of 74 toxic HAB species of which 23 species 429 

were common to the GoM (Bresnan et al., 2021). The diversity of HAB species in Australian and 430 

New Zealand waters included 43 toxic species, but only 13 species were common to the GoM 431 

(Hallegraeff et al., 2021c). In all the other long-term studies in the coastal seas of North Europe, 432 

the North Pacific, and the Gulf of Oman and Arabian Sea, observations were based on 433 

morphotaxonomic monitoring, and fewer than 20 toxin-producing species were found to be in 434 

common with the GoM (Al-Azari et al., 2015; Karlson et al., 2021; McKenzie et al., 2021; 435 

Sakamoto et al., 2021).  436 

Most of the previous time series reports were based on monitoring data generated from 437 

morphological observations by light microscopy. Only recently has HTS-metabarcoding been 438 

investigated as an approach for monitoring. HTS-metabarcoding studies conducted in the Bohai 439 

Sea (Huang et al., 2021) and Changjiang estuary (Cui et al., 2021) have reported a similar 440 

number of HAB species as reported here for the GoM. Both of these prior studies were also short 441 

term (days to months); however only 16 species were common to GoM. In the Changjiang 442 

estuary, China, considered a region with frequent HAB occurrences, only 13 were common to 443 

the GoM.  444 

HTS-metabarcoding has been compared with morphotaxonomy in a number of previous studies 445 

(e.g., Deagle et al., 2018); however, the lack of taxonomically validated reference sequences 446 

makes assessments difficult. In some cases light microscopy may still be preferred over V4 or 447 

V8-V9 markers (e.g., some species of Karenia, Alexandrium, Dinophysis); however, in other 448 

cases HTS-metabarcoding may be preferred (e.g., Heterocapsa, and benthic dinoflagellates, 449 



 

 

 

 

Gambierdiscus, Ostreopsis). Still, there remain a number of genera for which more reference 450 

sequences are needed to provide more definitive species identifications (e.g., Dinophysis, 451 

Phalacroma, and Pseudo-Nitzschia).  452 

5. Conclusions 453 

Metabarcoding is a valuable tool to assess the species richness of the plankton. When applied for 454 

HAB species detection, it allows for a more detailed understanding of diversity than traditional 455 

light microscopy because it allows for the identification of rare and cryptic species. The choice 456 

of markers, however, is crucial. Results from HTS of the V4 and V8-V9 regions of 18S rDNA 457 

indicated no universal single marker is appropriate for all HAB species identification and in 458 

many cases a combination of two markers is recommended. Moreover, a phylogenetic approach 459 

to confirm species identification should be used instead of just relying on BLAST results. A key 460 

difference between the BLAST based similarity approach and phylogeny is that the latter is 461 

much more flexible for taxonomic resolution without the need for subjective decisions (Jamy et 462 

al., 2020). The clustering method classifies OTUs that include a few bp differences (which may-463 

or-may not be in the exact same sequence position) to the same predetermined rank, whereas the 464 

phylogenetic approach allows distinctions based on sequence differences.  Another benefit of the 465 

phylogenetic approach is that it can also allow discovery of new species that are lacking 466 

reference sequences. BLAST analysis is beneficial when taxonomic annotation is sought for a 467 

higher taxonomic level, but results need to be validated when describing at the species level. 468 

There is a need for taxonomically validated reference sequences for all HAB species, especially 469 

including geographic variants. From this study, HAB diversity in the Gulf of Mexico was found 470 

to be higher than expected for the limited sampling period (7 weeks) and, importantly, 5 species 471 

were documented that had not previously been reported in the GoM.  472 
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Figure Legends 711 

 712 

Figure 1. Phytoplankton diversity and relative abundance (%) at infrakingdom/class (outer pie) 713 

with color-coded labels. The proportion of HAB species within each infrakingdom/class (inner 714 

pie) is indicated in red. (a) V4 marker, 835 OTUs (b) V8-V9 marker, 394 OTUs. 715 

Figure 2. Maximum likelihood tree inferred from validated OTUs V4 marker (A) and V8-V9 716 

marker (B). Numbers along the internodes represent bootstrap values. Note:  in Figure 2B, the 717 

long branch is indicated with a gap. 718 

Figure 3. Maximum likelihood trees inferred from taxonomically validated HAB references and 719 

potential HAB OTUs for the V4 marker (A, C, E, G, I) and V8-V9 marker (B, D, F, H, J). 720 

Results for the orders Dinophysiales (A & B), Gonyaulacales (C & D, I & J), Prorocentrales (E 721 

& F), Gymnodiniales (G & H). Numbers along the internodes represent bootstrap values. 722 
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Table 1.  HAB species in the Gulf of Mexico.  + indicates species present in GoM  

  TOAST3,4 Anderson 
et al. 2021 

Zingone et al. 
2021 

Cipolletta 
et al.  2021 

Bresnan et 
al.  2021 

Hallegraeff 
et al. 2021c 

Karlson et 
al. 2021 

Sakamoto et 
al. 2021 

Mozetič 
et al. 
2019 

Al-Azari 
et al. 
2015 

McKenzie et al. 
2021 

Xu et al. 
2017 

Huang et 
al. 2021 

Cui et al. 
2021 

Fu et al. 

2021 

Location Texas coast 
Gulf of 
Mexico 

Gulf of 
Mexico 

Mediterranean 
Sea 

LTER-MC Atlantic 
coast 5 

Australian 
and New 
Zealand 

Coastal 
seas of N. 
Europe6 

China, Japan, 
Korea and 

Russia 

Adriatic 
Ports 

Oman 
/Arabian 

Sea 

British 
Columbia, 

Canada 

Bohai Sea Bohai Sea Changjiang 
estuary 

Gulf of 

Thailand 

Sampling period 2007 - 2021 1990 - 
2019 

 1984 - 2021 1989 - 
2019 

1985 - 2018 1987 -
2019 

1970 - 2018 2011, 
2014, 
2015 

Jun 2006- 
Apr 2011 

1988 - 2017 Apr-Oct 
2013 

Jul- Aug 

2019 

Mar 8 – 12, 

2019 

July - Dec 

2018 

Number of total HAB species1 46 98 84 54 80 56 & 64 51 80 52 24 47 71 74 86 17 

Toxic HAB species2 46 84 84 54 74 43 51 80 36 12 35 10 36 32 17 

HAB species in common3 36 31 26 22 23 13 17 19 13 5 19 5 16 13 5 

Alexandrium andersonii + + + + +   +   +  + +  

Alexandrium hiranoi*7 +               

Alexandrium minutum# + + + + + + + + +   + +   

Alexandrium monilatum + +              

Alexandrium ostenfeldii + + + + + + + +   +  + +  

Alexandrium pacificum*7 +  +   + + +      +  

Alexandrium tamiyavanichii + +              

Amphidoma languida7 +    +  +  +    +   

Azadinium poporum# + +   +   +      + + 

Chattonella subsalsa# + + + +       +  +   

Dinophysis norvegica + +   +  + +  + +  + +  

Fibrocapsa japonica + + + + +   + +   + + +  

Gonyaulax spinifera + + + + +  +  +  + +    

Heterosigma akashiwo + + + +  + + + +  + + +   

Karenia bicuneiformis# + + + +     +       

Karenia brevis* + + + + + +    +   + +  

Karenia mikimotoi + + + + + + + + +  +  + + + 

Karenia papilionacea + + + + +    +    + +  

Karenia selliformis# + + + +           + 

Karlodinium veneficum + + + + + + + +   +  + +  

Margalefidinium polykrikoides + + + + +   +   + +   + 

Nitzschia bizertensis#7 +  +             

Phaeocystis globosa + + + +   + +        

Phaeocystis pouchetii + +     +    +     

Polykrikos hartmannii# + + + + +           

Prorocentrum cordatum + + + + +    +  +  + +  

Prorocentrum lima + + + + +  + + +  +     

Prymnesium polylepis7 +  + + +  +    +     

Pseudo-nitzschia australis* + + +  + +     +  +   

Pseudo-nitzschia cuspidata + + +  + + + +        

Pseudo-nitzschia delicatissima* + + + + + + + + + + +  + + + 

Pseudo-nitzschia multiseries + + +  + + + +   +  +   

Pseudo-nitzschia pungens + + + + + + + + + + +   +  

Pseudo-nitzschia seriata + +   +  + + + + +     



Pseudo-nitzschia turgidula + +  +  +  +   +     

Pyrodinium bahamense + +              

1 author identified HAB species (includes high biomass bloom forming non-toxic species)  

2 UNESCO-IOC defined toxic HAB species  

3 this study  

4 includes additional HAB species observed from images at TOAST (Chattonella sp., Coolia tropicalis, Dinophysis caudata, D. ovum, Gymnodinium 

catenatum, Lingulodinium polydra, Ostreopsis ovata, Phalacroma rotundatum, Prorocentrum texanum, Pseudochattonella sp., Pseudo-nitzschia 

multistriata, Vicicitus globosus)  

5 Coast included Spain, Portugal, France, UK, Ireland, Iceland and Faroe Islands  

6 coasts of the Baltic Sea, Kattegat-Skagerrak, eastern North Sea, Norwegian Sea, and the Barents Sea  

7 first documented in the Gulf of Mexico  

* indicates species distinguished with V8-V9 marker only  

# indicates species distinguished with V4 marker only  




